7 research outputs found

    The Molecular Basis of Antibody Mediated Neutralization of Hepatitis C Virus

    Get PDF
    Hepatitis C virus: HCV) is positive strand, blood-borne, hepatotropic RNA virus that causes chronic infection in ~170 million people worldwide and is the leading cause of liver transplantation in the United States. HCV entry and attachment is mediated by the envelope protein E2 through interaction with several cellular receptors including CD81, scavenger receptor B1: SRB-1), claudin-1, and occludin, although the exact mechanism by which these receptors facilitate infection remains unclear, largely due to the absence of a structural model of E2. The production of neutralizing antibodies against E2 is thought to be important for controlling HCV infection, likely by blocking virus interaction with these receptors. To better understand the structural and molecular basis of antibody neutralization of HCV, which could be used to inform novel therapeutic or vaccine approaches, we generated a panel of 78 monoclonal antibodies: MAbs) against the E2 protein from HCV genotypes 1 and 2 and assessed their neutralizing activity in vitro. Using this approach and by performing mechanistic studies, we identified three neutralizing MAbs, H77.16, H77.39, and J6.36, that inhibit infection at a post-attachment step. Using a yeast display library of E2 protein variants, we mapped the critical binding residues of these MAbs to distinct regions of the E2 protein: H77.16 binds within the HVR1 and to a conserved CD81 binding region ~125 amino acid residues C-terminal to the HVR1; H77.39 binds to conserved residues upstream of the hypervariable region: HVR1); and J6.36 binds to amino acid residues within HVR1 as well a site ~150 amino acids C-terminal to HVR1. Receptor-binding inhibition studies using E2 demonstrated that H77.16 potently inhibits binding to SR-B1, H77.39 potently inhibits binding to SR-B1 and CD81, and J6.36 potently inhibits binding to SR-B1 and modestly inhibits binding to CD81. Further mechanistic studies demonstrated that MAb-mediated neutralization could be enhanced by increases in pre-incubation temperature and time and that these results were likely due to altered epitope exposure on the viral surface. Together, these data provide new insight into the mechanisms by which antibodies neutralize infection of HCV

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Distinct oligoclonal T cells are associated with graft versus host disease after stem-cell transplantation.

    No full text
    BACKGROUND: In patients with hematologic malignancies who receive stem-cell transplantation, donors\u27 T cells can recognize minor histocompatibility antigens on recipient cells and generate an objective response against the tumor. However, a major side effect of such therapy is graft-versus-host disease (GVHD). The purpose of this study was to characterize distinct T-cell clones that were frequently and exclusively involved in GVHD or graft-versus-tumor (GVT) effects. METHODS: We hypothesized that distinct GVHD-associated T-cell clones can be identified during the disease progression. To test this, we conducted comparative analysis of T-cell receptor (TCR) Vβs in donor-recipient pairs of patients with GVHD versus those with GVHD-free and relapse-free survival using quantitative reverse-transcriptase polymerase chain reaction and spectratyping analyses. RESULTS: We identified three sets of T-cell clones that were either frequently involved in GVHD (TCR Vβ4, 11, and 23) or GVT effect (TCR Vβ9, 16, and 20), or were increased at the time of GVHD and GVT effects in a patient-specific manner (TCR Vβ2, 3, 7, 12, 15, and 17). Spectratyping analysis showed restricted clonality of the identified TCR Vβs. Polymerase chain reaction analysis also confirmed the presence of GVHD-associated T-cell clones at the site of the disease. CONCLUSIONS: These data suggest that GVHD- and GVT-associated clones can be distinguished by molecular analysis of TCR Vβ to develop targeted therapy for GVHD

    Mapping geographical inequalities in oral rehydration therapy coverage in low-income and middle-income countries, 2000-17

    No full text

    Five insights from the Global Burden of Disease Study 2019

    No full text

    Mapping geographical inequalities in oral rehydration therapy coverage in low-income and middle-income countries, 2000–17

    No full text
    Abstract Background: Oral rehydration solution (ORS) is a form of oral rehydration therapy (ORT) for diarrhoea that has the potential to drastically reduce child mortality; yet, according to UNICEF estimates, less than half of children younger than 5 years with diarrhoea in low-income and middle-income countries (LMICs) received ORS in 2016. A variety of recommended home fluids (RHF) exist as alternative forms of ORT; however, it is unclear whether RHF prevent child mortality. Previous studies have shown considerable variation between countries in ORS and RHF use, but subnational variation is unknown. This study aims to produce high-resolution geospatial estimates of relative and absolute coverage of ORS, RHF, and ORT (use of either ORS or RHF) in LMICs. Methods: We used a Bayesian geostatistical model including 15 spatial covariates and data from 385 household surveys across 94 LMICs to estimate annual proportions of children younger than 5 years of age with diarrhoea who received ORS or RHF (or both) on continuous continent-wide surfaces in 2000–17, and aggregated results to policy-relevant administrative units. Additionally, we analysed geographical inequality in coverage across administrative units and estimated the number of diarrhoeal deaths averted by increased coverage over the study period. Uncertainty in the mean coverage estimates was calculated by taking 250 draws from the posterior joint distribution of the model and creating uncertainty intervals (UIs) with the 2·5th and 97·5th percentiles of those 250 draws. Findings: While ORS use among children with diarrhoea increased in some countries from 2000 to 2017, coverage remained below 50% in the majority (62·6%; 12 417 of 19 823) of second administrative-level units and an estimated 6 519 000 children (95% UI 5 254 000–7 733 000) with diarrhoea were not treated with any form of ORT in 2017. Increases in ORS use corresponded with declines in RHF in many locations, resulting in relatively constant overall ORT coverage from 2000 to 2017. Although ORS was uniformly distributed subnationally in some countries, within-country geographical inequalities persisted in others; 11 countries had at least a 50% difference in one of their units compared with the country mean. Increases in ORS use over time were correlated with declines in RHF use and in diarrhoeal mortality in many locations, and an estimated 52 230 diarrhoeal deaths (36 910–68 860) were averted by scaling up of ORS coverage between 2000 and 2017. Finally, we identified key subnational areas in Colombia, Nigeria, and Sudan as examples of where diarrhoeal mortality remains higher than average, while ORS coverage remains lower than average. Interpretation: To our knowledge, this study is the first to produce and map subnational estimates of ORS, RHF, and ORT coverage and attributable child diarrhoeal deaths across LMICs from 2000 to 2017, allowing for tracking progress over time. Our novel results, combined with detailed subnational estimates of diarrhoeal morbidity and mortality, can support subnational needs assessments aimed at furthering policy makers’ understanding of within-country disparities. Over 50 years after the discovery that led to this simple, cheap, and life-saving therapy, large gains in reducing mortality could still be made by reducing geographical inequalities in ORS coverage
    corecore